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Abstract. Low-cost gas and particulate sensor packages offer a compact, lightweight, and easily transportable solution to 

address global gaps in air quality (AQ) observations. However, regions that would benefit most from widespread deployment 

of low-cost AQ monitors often lack the reference grade equipment required to reliably calibrate and validate them. In this 

study, we explore approaches to calibrating and validating three integrated sensor packages before a 1 year deployment to rural 15 

Malawi using collocation data collected at a regulatory site in North Carolina, USA. We compare the performance of five 

computational modelling approaches to calibrate the electrochemical gas sensors: k-Nearest Neighbor (kNN) hybrid, random 

forest (RF) hybrid, high-dimensional model representation (HDMR), multilinear regression (MLR), and quadratic regression 

(QR). For the CO, Ox, NO, and NO2 sensors, we found that kNN hybrid models returned the highest coefficients of 

determination and lowest error metrics when validated; they also appeared to be the most transferable approach when applied 20 

to field data collected in Malawi. We compared calibrated CO observations to remote sensing data in two regions in Malawi 

and found qualitative agreement in spatial and annual trends. However, the monthly mean surface observations were 2 to 4 

times higher than the remote sensing data, possibly due to proximity to small-scale combustion activity not resolved by satellite 

imaging. We also compared the performance of the integrated Alphasense OPC-N2 optical particle counter to a filter-corrected 

nephelometer using collocation data collected at one of our deployment sites in Malawi. We found the performance of the 25 

OPC-N2 varied widely with environmental conditions, with the worst performance associated with high relative humidity (RH 

> 70%) conditions and influence from emissions from nearby biomass cookstoves. We did not find obvious evidence of 

systematic sensor performance decay after the 1 year deployment to Malawi; however, overall data recovery was limited by 

insufficient power and access to technical resources at deployment sites. Future low-cost sensor deployments to rural Sub-

Saharan Africa would benefit from adaptable power systems, standardized sensor calibration methodologies, and increased 30 

regulatory grade regional infrastructure.  
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1 Introduction 

Ambient air pollution is a leading cause of morbidity and premature mortality in Sub-Saharan Africa (SSA) (Murray et al., 

2020). Sources of air pollution in SSA are expected to increase over time given the regional growth in population and energy 

demand, a biomass fuel dominated energy mix, and slash and burn agricultural practices (Shikwambana and Tsoeleng, 2020; 35 

Stevens and Madani, 2016; Liousse et al., 2014; Amegah and Agyei-Mensah, 2017). However, regulatory air quality (AQ) 

monitoring is uncommon in many SSA countries, partially due to the high cost of reference grade equipment (Amegah, 2018; 

Petkova et al., 2013). Remote sensing is a valuable tool to address these data gaps, but satellite observations alone have various 

shortcomings relative to in situ measurements (Martin et al., 2019). Additional validation with reliable surface measurements 

is required, particularly in SSA (Malings et al., 2020). In the meantime, low-cost gas and particulate sensor packages provide 40 

an affordable, compact, and easily transportable approach to supplement air quality networks in regions where reference grade 

instrumentation is not accessible. Malawi, located in southeastern Africa, provides a relevant context to investigate how low-

cost sensors (LCS) can be used to address the global dearth of AQ observations. The Malawi Bureau of Standards published 

ambient air quality limits based on World Health Organization guidelines in 2005 (Mapoma and Xie, 2013; MBS, 2005), but 

there is no regulatory air quality monitoring program in the country to date. Previous studies on AQ in Malawi have primarily 45 

focused on indoor air quality or were unable to capture long-term trends (Fullerton et al., 2009, 2011; Jary et al., 2017; Mapoma 

and Xie, 2013). A reliable, affordable LCS monitoring network in Malawi could provide data to monitor the evolution of air 

quality and establish baselines for future AQ management.  

 

Given the potential applications, LCS deployments are increasingly common (Giordano et al., 2021). However, as the cost of 50 

LCS decreases, so may the selectivity, linearity, and accuracy. Electrochemical gas sensors are prone to interference and cross-

sensitivities; they may respond to changes in temperature (T) and relative humidity (RH) or to the presence of gases other than 

the target analyte (Lewis et al., 2016a; Mead et al., 2013). Failure to properly account for these during calibration can result in 

substantial measurement error under ambient conditions (Lewis et al., 2016a; Cross et al., 2017; Castell et al., 2017; Mead et 

al., 2013). The calibration and application of LCS technologies to augment existing regulatory monitoring networks has been 55 

widely explored (Cross et al., 2017; Hagan et al., 2018; Malings et al., 2019a, b; Mead et al., 2013; Zimmerman et al., 2018; 

Li et al., 2021), but historically there has been little standardization in calibration approach or performance evaluation (Castell 

et al., 2017; Duvall et al., 2021; Morawska et al., 2018; Rai et al., 2017). In response to this, the U.S. Environmental Protection 

Agency (EPA) recently released two reports outlining testing protocols, metrics, and target values to evaluate the performance 

of ozone and fine particulate matter (PM2.5) sensors for non-regulatory supplemental and informational monitoring applications 60 

in the U.S. (Duvall et al., 2021a, b). Unfortunately, there is no similar guidance for validating LCS for deployments in settings 

without in situ regulatory monitors. The deployment and evaluation of  LCS packages in areas without existing AQ monitoring 

infrastructure is limited, but is becoming increasingly common (Chatzidiakou et al., 2019; Hagan et al., 2019; Subramanian et 

al., 2020, 2018). A lack of in situ regulatory monitors requires collocation, calibration, and validation at another site, potentially 
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under a set of environmental conditions different from those of the target environment. Advancements in laboratory chamber 65 

calibration may help resolve this issue; studies have shown that gas sensors can be exposed to and calibrated for a range of 

environmental conditions (i.e., gas concentration, RH, T, pressure, etc.), which may allow LCS cross-sensitivity and 

interference to be measured and controlled for before deployment (Williams et al., 2014b; Spinelle et al., 2016; Lewis et al., 

2016b; Spinelle et al., 2015). However, studies of low-cost particle sensors have observed better performance under laboratory 

versus field conditions (Rai et al., 2017). For example, previous long-term field assessments of the Alphasense OPC-N2 optical 70 

particle counter have observed large variability with changing seasons, environmental conditions, and background pollution 

levels (Bulot et al., 2019; Rai et al., 2017; Sousan et al., 2016). Low cost optical particle sensors can systematically 

overestimate mass concentrations under high RH (>75%) conditions due to hygroscopic growth of the particles (Crilley et al., 

2018; Di Antonio et al., 2018), with errors ranging from 100 to 500% depending on the aerosol hygroscopicity (Hagan and 

Kroll, 2020). Further, the complex chemical, physical, and optical properties of aerosol can complicate the field evaluation of 75 

low-cost particle sensors. For the Alphasense OPC-N2, particle composition may impact the sensor output by as much as a 

factor 30 (Rai et al., 2017; Sousan et al., 2016). A recent modelling effort by Hagan and Kroll (2020) found that the optical 

properties and particle size distribution of the source aerosol can result in errors of up to 100% and 90%, respectively, in mass 

measurements made by low-cost optical particle sensors. Measurement errors were highest for strongly absorbing aerosol 

dominated by small (< 300 nm) particles. These traits can be characteristic of aerosol emitted by biomass-burning (Reid et al., 80 

2005), a dominant source of ambient PM throughout SSA (Marais and Wiedinmyer, 2016; Queface et al., 2011; Liousse et al., 

2014). Stringent quality assurance is necessary to ensure the validity of LCS particle measurements in this environment.  

 

In this study, we calibrated and evaluated the “ARISense”, a moderate-cost, integrated gas, particle, and meteorological sensor 

package (Aerodyne, Inc.) for long-term field deployment to Malawi where comparison to regulatory grade equipment is not 85 

currently possible. Our objectives are to 1) evaluate various modelling approaches to calibrate the gas sensors using field 

collocation data from North Carolina, USA, 2) identify one modelling approach that is best suited to interpret 1 year of 

deployment data collected in Malawi, 3) estimate error in the particle sensor using a mass-corrected nephelometer, 4) compare 

calibrated observations in Malawi to remote sensing data products and surface measurements from similar environments, 5) 

characterize the stability and longevity of the sensors and calibration models after 1 year in the field and after repeated exposure 90 

to high-concentration emissions, and 6) provide contextual evidence of the benefits, limitations, and durability of this 

technology and methodology for our application. Lastly, we provide guidance on considerations to improve future remote 

deployment efforts. Detailed analysis and discussion of the full year of measurements collected in Malawi will be presented 

in a forthcoming complementary publication. 

2 Methods 95 

The ARISense sensors were collocated with reference equipment in North Carolina (NC) before and after deployment to 

Malawi. One OPC-N2, the ARISense particle sensor, was collocated with a semi-reference instrument at a field site in Malawi. 
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Instrumentation, collocation, and calibration are covered in Sect. 2.1 – 2.4. Performance assessment metrics are given in Sect. 

2.5.  Calibrated ARISense were deployed to Malawi (Sect. 2.6) and compared to remote sensing data products (Sect. 2.7).   

2.1 ARISense sensor packages 100 

The ARISense package integrated the following sensors from Alphasense Ltd., UK: carbon monoxide (CO-B4), nitric oxide 

(NO-B4), nitrogen dioxide (NO2-B43F), total oxidants (Ox-B421), and the OPC-N2 optical particle counter. The ARISense 

reported voltage readings from electrochemical gas sensor working electrodes (WE) and auxiliary electrodes (AE); the sensor 

differential voltage (ΔV) was calculated as WE – AE. The Alphasense OPC-N2 recorded counts in 16 size bins spanning 

particle diameters from 0.38 to 17.5 µm, mainly coarse (> 2 µm) and some accumulation mode (0.1 to 2 µm) aerosols (Badura 105 

et al., 2018; Crilley et al., 2018; Sousan et al., 2016). Although the OPC-N2 had embedded algorithms to convert count 

measurements into mass concentrations of PM1.0, PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 

1.0, 2.5, and 10 µm, respectively), here the bin count data were manually integrated, converted to number concentration (cm−3) 

assuming unity measurement efficiency across the bin range, and then to mass concentration assuming spherical particles with 

uniform density (1.65 g cm−3). The values reported for PM2.5 are PM2; the location of the adjacent bin separations (at 2.0 and 110 

2.99 µm) did not allow direct estimates of PM2.5. However, this was only one of many contributing sources of error in 

approximating true mass concentration with the Alphasense OPC-N2. Given the minimum cut-off diameter, we were unable 

to measure (nor did we try to estimate) the mass from particles smaller than 0.38 µm. 

 

We used four ARISense monitors in this study: serial numbers ARI013, ARI014, ARI015 (Version 1.0, 2017), and ARI023 115 

(Version 2.0, 2018). The monitors were powered by solar panels charging external batteries and recorded data to an internal 

USB device. Additional environmental and meteorological sensors (i.e., T, RH, pressure, solar intensity, and noise) and system 

design are described in Cross et al. (2017). Details and images are provided in Supplementary Information, Sect. 1. 

2.2 Reference instrumentation  

Gas concentration measurements for NOx/NO/NO2 (Teledyne Model T200UP), CO (Thermo Scientific Model 48i-TLE), and 120 

Ozone (Ecotech Federal Equivalent Method instrument) were obtained from reference instruments operated by the North 

Carolina Department of Environmental Quality (NC-DEQ) and the Environmental Protection Agency (EPA).  

 

The semi-reference MicroPEM (RTI International) instrument was used to assess the OPC-N2 in Malawi. The MicroPEM, 

equipped with T and RH sensors, sampled (0.50 L/min, 100% duty cycle) via a PM2.5 inlet into a nephelometer (0.1 Hz) and 125 

25 mm PTFE filter. Previous validation studies found the MicroPEM performed well across a wide range of ambient PM 

concentrations and the real-time nephelometer, after gravimetric correction, agreed with fixed-site reference monitors (Du et 

al., 2019; Williams et al., 2014a). However, deployments observed baseline (zero) drift and poor performance at RH conditions 

above 94% (Williams et al., 2014a; Zhang et al., 2018).  To account for baseline drift, the MicroPEM was zeroed before each 

https://doi.org/10.5194/amt-2021-372
Preprint. Discussion started: 23 November 2021
c© Author(s) 2021. CC BY 4.0 License.



5 

 

deployment using a HEPA filter. Additional details on the MicroPEM sensor, filter analysis, and quality assurance are provided 130 

in Supplementary Information, Sect. 1.  

2.3 Gas sensor collocation and calibration 

Before deployment to Malawi, ARI013, ARI014, and ARI015 were collocated with EPA and NC-DEQ reference instruments 

at a near-highway site near Durham, North Carolina, USA (35.865°N, 78.820°W) between 29 May and 15 June 2017 (boreal 

summer – warm, mild season). ARI013 and ARI014 were collocated for 17 days. ARI015 was collocated for only 8 days due 135 

to a defect identified early in the deployment. All data were recorded at 1 minute resolution. After their return from Malawi, 

ARI013 and ARI014 were collocated at the same site from 22 August 2018 and 20 March 2019. The Ecotech Ozone monitor 

at this site was no longer operational. As a proxy, we obtained ozone data (Thermo Environmental Instruments, Inc. Model 

49i) from the Millbrook NC-DEQ site (35.856°N, 78.574°W), located < 20 km away. ARI015 remained in Malawi and was 

relocated to a new site. Collocation details are provided in Supplementary Information, Sect. 2.   140 

 

The pre-deployment collocation data were used to train, test, and compare the performance of five calibration models to convert 

the raw voltage data to concentration units and to account for sensor interference and cross-sensitivities. Outlying data points 

in the raw ARISense gas sensor voltage data due to noise and power cycling were visually identified and removed; raw NO 

sensor data collected within 8 hours of a power cycle were also removed due to the extended warmup time of the NO-B4 145 

sensor. ARISense data were time aligned with the reference data and both datasets were averaged to 5-min resolution. A 

random 70% of the collocation data were used for model training and the remaining 30% were withheld for testing. Assessment 

metrics were calculated only for the withheld data. 

 

Table 1: Description of the five calibration modelling approaches and data inputs for each gas sensor and model combination 150 

(CO = carbon monoxide, NO = nitrogen oxide, NO2 = nitrogen dioxide, O3 = ozone). ΔV is the voltage difference between the 

working electrode (WE) voltage and the auxiliary electrode (AE) voltage measured by each electrochemical gas sensor; RH = 

relative humidity, T = temperature, DP = dew point. 

 

Gas Sensor Data Inputs to Model Model(s) applied  

CO CO ΔV, RH, T, & DP All 

NO NO ΔV, RH, T, DP, & NO WEa All except QR 

NO2 NO2 ΔV, RH, T, & DP All except QR 

O3 Ox ΔV, DP, & NO2 ΔV b All except QR 

 155 

akNN hybrid only 

bRF hybrid only  
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Individual calibration models were built for each gas sensor (O3, NO, NO2, CO) in each monitor (ARI013, ARI014, ARI015) 

using five modelling approaches: k-Nearest Neighbor (kNN) hybrid (Hagan et al., 2018), Random Forest (RF) hybrid (Malings 

et al., 2019a), High-Dimensional Model Representation (HDMR) (Cross et al., 2017), quadratic regression (QR) (Malings et 

al., 2019a), and multi-linear regression (MLR). The modelling approaches are summarized in Table 1. O3 models were 

designed to account for sensor cross-sensitivity to NO2 (Cross et al., 2017).  160 

2.4 OPC-N2 collocation and calibration 

ARI023 was collocated with a MicroPEM in an ambient, combustion source-influenced environment on a house rooftop (4 m 

above ground level) in Mikundi village in Mulanje District, Malawi (16.056°S, 35.535°E) between 25 July 2018 and 7 August 

2018 (austral winter – cool, dry season). We collected 130 hours of collocation data over three multi-day collection periods 

(i.e., 3 PTFE filters). A 75% completeness requirement was applied before the raw 1 min data were averaged to 1 h and 24 h 165 

intervals. Sub-daily averaging intervals were used to assess the OPC-N2 for near real-time (1 min) and diurnal trend (1 h) 

monitoring applications. A bin-wise RH-correction algorithm based on κ-Kӧhler theory was applied to correct for hygroscopic 

growth under high RH conditions, initially assuming particle density (ρ) equal to 1.65 g cm−3 and aerosol hygroscopicity (κ) 

of 0.6 (Di Antonio et al., 2018).  To observe sensitivity of this correction to the assumed hygroscopicity, the density was held 

constant at 1.65 g cm−3 and the κ value was varied (κ = 0.15, 0.6, and 1). To observe variability due to the assumed source of 170 

the aerosol, the density and hygroscopicity were varied to approximate ammonium nitrate, dust, wildfire, and background 

aerosols. Aerosol property assumptions (κ and density) are based on Hagan and Kroll (2020) & Petters and Kreidenweis (2007). 

More detail is available in Supplementary Information Sect. 3. 

2.5 Assessment metrics  

Metrics and target values adapted from recent U.S. EPA guidelines (Duvall et al., 2021a, b) were used to assess ARISense 175 

performance (Table S4). To assess linearity, the correlation between estimated and true concentrations was calculated using 

the coefficient of determination (R2). Instead of the EPA recommended Root Mean Square Error (RMSE) metric, the Mean 

Absolute Error (MAE) was used to assess error in the estimated measurements compared to the true values. The coefficient of 

variation (cV) was used to assess precision. To assess bias, a linear regression model was fit, and the slope (m) and intercept 

(b) were calculated.  180 

 

To estimate confidence in hourly-averaged OPC-N2 measurements made under characteristic field conditions in Malawi, we 

calculated 68% (1-sigma) prediction intervals using the Malawi collocation data set (Fig. S9). The 60-min averaged 

observations were used to fit a linear model, which required a Box-Cox transformation (Box and Cox, 1964) to obtain normally 

distributed residuals (Fig. S10). Details and quantitative descriptions are given in Supplementary Information, Sect. 4. 185 

https://doi.org/10.5194/amt-2021-372
Preprint. Discussion started: 23 November 2021
c© Author(s) 2021. CC BY 4.0 License.



7 

 

2.6 Deployment to Malawi 

ARI013, ARI014, and ARI015 were deployed to their respective monitoring locations in Malawi from July 2017 to July 2018. 

The three locations were selected to provide regional variation. ARI013 (“Village 2” site) and ARI014 (“Village 1” site) were 

deployed < 5 km apart in two nearby rural villages in Mulanje, Malawi. ARI015 (“University” site) was deployed >375 km 

northwest of the village sites at a rural university campus ~30 km from the capital city (Lilongwe). Satellite images, maps, and 190 

site characteristics are given in Supplementary Information, Sect. 5.  

2.7 Remote sensing data   

Two publicly available NASA data products were obtained from the Goddard Earth Sciences Data and Information Services 

Center (GES-DISC) Interactive Online Visualization and Analysis Infrastructure (GIOVANNI): 1) area-averaged, monthly 

Multispectral CO Surface Mixing Ratio (Daytime/Descending) from MOPITT (a satellite observation), and 2) CO Surface 195 

Concentration - ENSEMBLE from MERRA-2 (a global reanalysis product); henceforth referred to as “MOPITT” and 

“MERRA-2”. Monthly averaged MOPITT and MERRA-2 observations were compared to ARISense CO surface data collected 

at the Village and University locations. Given the physical proximity of Village 1 and Village 2, and the similarity in monthly 

mean CO concentration at each site (Fig. S17), the average of the data sets (“Village”) was used. Additional details are given 

in Supplementary Information, Sect. 6.  200 

3 Results and discussion  

3.1 Gas sensor performance during collocation  

Raw gas sensor voltages from all three ARISense monitors (ARI013, ARI014, ARI015), excluding the Ox sensor in ARI015, 

were highly correlated (R2 > 0.8) during the pre-deployment collocation, suggesting changes in sensor response were due to 

environmental changes, not sensor-to-sensor variability (Fig. S3).  The sensors in ARI013 and ARI014 were most closely 205 

correlated (R2 > 0.9). The raw ARI015 Ox sensor data showed weaker temperature dependence and the lowest correlation (R2 

< 0.6) with OX sensors in ARI013 and ARI014.  

 

Figure 1 shows two performance metrics representing each sensor-model combination; points toward the lower left corner of 

each panel indicate better performance. Gas sensors responded differently to calibration; the NO2 sensors in all three ARISense 210 

were the least correlated with reference measurements (R2 < 0.6) compared to the other gas sensors. Only one NO2 sensor, 

calibrated by the RF hybrid model, achieved the target value for the linearity metric (R2 > 0.8). The Ox sensors returned the 

highest performance metrics of the gas sensors; all modelling approaches attained similar performance metrics (0.85 < R2 < 

0.98 and 1.5 < MAE < 3.5 ppb), well within the target values. The NO and CO sensors performed similarly, considering MAE 

values compared to the typical ambient concentration ranges; ambient CO concentrations are generally 1-2 orders of magnitude 215 

larger than NOx.  
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Figure 1: Performance comparison of gas sensors grouped by (a) modelling approaches and (b) ARISense monitor. Each data 220 

point represents the paired metrics (MAE and R2) for the four gas sensors (O3, NO2, NO, CO) in the three ARISense monitors 

(ARI013, ARI014, ARI015) as calibrated by five types of calibration models (kNN hybrid, RF hybrid, HDMR, MLR, QR). 

MAE is mean absolute error. R2 is the coefficient of determination (-infinity ≤ R2 ≤ 1). The lower left corner region of each 

panel indicates the highest performance based on these metrics.  

 225 

For the suite of gas sensors in the ARISense monitors, we found the hybrid models (RF and kNN) to be the best among the 

modelling approaches used in the pre-deployment collocation testing, with the kNN hybrid slightly outperforming the RF 

hybrid for all four gas sensors (Figure 1a). The other modelling approaches (HDMR, MLR and QR) were similar in overall 

performance, however the MLR failed to meet target values for some ARISense-gas sensor combinations. The HDMR models 

were set to allow only first-dimensional interactions, as second-order interactions led to spurious results for data collected 230 
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outside the bounds of training data (see Sect. 3.2 - on deployment conditions). For the CO sensors, this effectively made the 

HDMR model equivalent to the MLR model. The statistical metrics achieved by both models were identical, making these 

points darker in Figure 1. None of the ARISense consistently performed better than the others (Figure 1b); overall performance 

varied by gas sensor type and modelling approach.   

3.2 Gas sensor performance during deployment  235 

Given that RH, T, DP, and differential voltage were inputs to the calibration models, the ranges of these values during training 

and testing should mimic the ranges expected during deployment. Otherwise, the model is required to extrapolate beyond its 

training bounds, which could lead to non-physical results (e.g., negative concentration values). Further, the testing statistics 

derived from the collocation cannot be expected to hold for conditions far beyond those experienced during the performance 

characterization. Overall, the collocation and deployment settings exhibited a similar range of environmental conditions (Fig. 240 

S19-22), but T and RH ranges in NC (15 to 40°C and 20 to 80%) were less extreme than in Malawi (10 to 45°C and 10 to 

95%). While in Malawi, the ARISense experienced more time at lower temperatures (T < 25°C), lower gaseous concentrations 

(other than CO), and lower ambient pressure (5 to 15 kPa lower depending on site). Although the ARISense were deployed at 

a higher elevation in Malawi than during the collocation in North Carolina (625 m vs 120 m ASL), all models were built using 

the differential voltages (WE-AE) of each electrochemical gas sensor. Therefore, the pressure-related shifts in the WE and AE 245 

baseline were not expected to pose an issue to the calibrated Malawi data; this variation in pressure was within the operating 

range given on the sensor specification sheets (80 to 120 kPa) and was stated not to have long term impacts by the manufacturer 

(Alphasense FAQs, 2021). Even so, we did not have the laboratory chamber data to investigate this potential issue.   

 

Figure 2 shows bivariate distributions of T, RH, and gas sensor differential voltage data collected in NC and Malawi. In 250 

addition to capturing interactions between variables, Figure 2 shows that even when in the same environment during the NC 

collocation, the individual sensors in each ARISense responded differently. Compared to ARI013 and ARI014, the Ox sensor 

in ARI015 showed weaker temperature dependence (Fig. 2c). Since ARI015 had a shorter collocation period, it could be 

hypothesized that if ARI015 were present in the collocation environment for the same amount of time as ARI013 and ARI014, 

its response would look more like the ranges measured by the other sensors. However, this cannot fully explain the variation 255 

between individual sensors. For example, there is considerable variation between the ARI013 and ARI014 NO2 differential 

voltage ranges (Fig. 2g-h), despite having identical collocation periods. Further, the raw CO sensor data for all three monitors 

showed much less inter-sensor variation (Fig. 2d-f), even despite the shorter collocation period of ARI015. This inter-sensor 

variation, which appears largest for the NO2 sensors, may partially explain the lower performance of this gas sensor group 

during calibration model performance testing, compared to the other gas sensor types (Figure 1).  260 
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Figure 2: Bivariate distributions of gas sensor calibration model data inputs for each ARISense monitor using kernel density 

estimation. Density is reflected in the color scheme; Darker colors indicate more data points in that region. Training data 

collected in North Carolina are shown in grey; data collected during deployment to Malawi are shown in color. Regions where 265 

the deployment location distributions overlap with the NC distributions indicate the regimes for which the calibration models 

were trained. Regions where the deployment location distributions extend beyond the NC distributions indicate regimes where 

the calibration models extrapolated to estimate pollutant concentrations.   
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There were notable regimes in Malawi that required the calibration models to extrapolate beyond NC training conditions. NO  270 

differential voltage responses in NC and Malawi did not completely overlap (Fig. 2g-i), especially in the low-concentration 

regime (i.e., V near 0 mV) which was more frequent in Malawi. The collocation site in NC was 10 m from an 8-lane freeway 

(Saha et al., 2018), therefore NOx concentrations were higher than in rural Malawi where vehicles and industry are rare. 

However, for ARI014 in Village 1, there was a higher NO2 response in the deployment environment compared to the 

collocation environment. This could be partially explained by sensor interference by RH and T, which were more extreme 275 

(i.e., beyond the training ranges) in Malawi (Fig. S23).  Figure 2e shows the maximum ARI014 CO differential voltage in 

Malawi (350 mV) was 3 times higher than the maximum voltage registered in NC (100 mV), but this difference was aligned 

with observations of nearby sources. We expected higher CO in Malawi than in NC, where biomass burning is less common 

and other sources (e.g., vehicles) are well controlled. ARI014 was deployed in a densely populated village, adjacent to more 

biomass cookstove activity than ARI013 or ARI015.  280 

 

The Ox differential voltage ranges were the most dissimilar between the collocation and deployment environments. The most 

frequent regimes, the heaviest shaded regions in Fig. 2a-c, did not overlap for any of the ARISense. In NC, the relationship 

between the Ox sensor voltage and ambient temperature was positive and approximately monotonic. Generally, higher 

temperatures facilitate ozone production, therefore this relationship fit our expectation for an urban site in a single season. 285 

However, the positive relationship between Ox sensor voltage and temperature did not always hold in the deployment sites. 

Figure 2a-c shows a high temperature-low ozone regime in Malawi that was not present in the NC data, presumably due to 

differences in ozone precursor regimes. Further, for all three Malawi sites, the minimum Ox sensor voltages were lower (-10 

< Vmin < 0) than minima in the NC collocation.  

 290 

Given the absence of reference monitors in Malawi, we calculated and compared the annual mean diurnal trends of each 

pollutant, at each site, as predicted by the five models to assess the transferability of the calibration models to Malawi. Our 

definition of a transferable model required that it produce: (a) non-negative concentration values and (b) diurnal trends 

consistent with our observations and knowledge of nearby emission sources, regional air quality, and atmospheric chemistry. 

Non-physical predictions from a given model may indicate that differences between the collocation and deployment 295 

environments were too large to reasonably extrapolate and therefore any field results calibrated by that model are likely not 

reliable. Alternatively, coherency among the concentration values and trends estimated by the models may suggest that the 

field results are robust against variation in the modelling approaches and can contribute to our confidence in the estimated 

concentration values and trends. Diurnal trends in Figure 3 suggest the kNN hybrid model was the most transferable for 

interpreting field data for all gas sensors. However, both the kNN and RF hybrid models predicted similar trends and values 300 

for most sensors. The MLR and HDMR models also predicted similar trends, but frequently predicted negative values.  
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Figure 3: Diurnal trends of calibrated gas measurements (rows) at each site (columns) in the three deployment environments. 305 

QR model built for and applied to CO data only. The thick line indicates hourly mean, the shaded region indicates interquartile 

range. Midnight is the zero hour. The hours are in local time. 
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Calibrated CO data showed the highest coherency across model predictions (Fig. 3). Calibrated CO data were rarely non-

physical. All models predicted similar diurnal trends, specific to each site. Knowledge of the nearby emission sources and 

activity patterns lend support to the calibrated CO data; for example, the village monitors were adjacent to widespread 310 

household biomass cookstove activity, coincident with the concentration peaks seen in the diurnal trend. This diurnal cooking 

pattern was observed in both CO and OPC-N2 (Figure 7) data at both village sites and was measured in complementary 

emissions monitoring work (Bittner et al, in prep). Further, ARI014 was in a more densely populated village than ARI013, 

contributing to higher CO peaks. The QR model overestimated CO peaks compared to other models for the Village 1 data, 

likely because the model training set did not include high concentration data (Fig. 2e) and the quadratic term was not well 315 

constrained. Despite the calibrated CO measurements in Malawi being higher than the concentrations experienced in NC, 

particularly for ARI014 in Village 1, we expect that the calibrated CO measurements from Malawi are credible. We provide 

the following reasons for justification: a) the manufacturers report that the sensor response is expected to be linear up to 500 

ppm (Alphasense, LTD., 2019), b) we expect that RH/T interference has less influence on sensor readings in the higher 

concentration regime, c) all modelling approaches (other than QR) predicted highly similar diurnal trends and concentration 320 

values, and d) there were known CO emission sources, with diurnal usage patterns matching the observed trends, near the 

monitoring sites. This suggests, for this specific sensor under these conditions, that these modelling approaches (other than 

QR) could reliably extrapolate beyond the training data limits to provide reasonable measurements in the deployment 

environment. 

 325 

The calibrated NOx data showed less coherency than the CO data. NO2 trends were largely similar across the sites and 

concentrations were rarely negative, but calibrated NO trends varied across models and the lower performing models (HDMR 

and MLR) often predicted negative values. The better models identified in the NC collocation, kNN and RF hybrid, suggested 

that mean ambient NOx levels in Malawi were low (< 15 ppb).  We have lower confidence in the calibrated NOx measurements 

in Malawi for the following reasons: a) the calibrated observations (5 to 20 ppb) were on the same order of the noise level 330 

reported on the sensor specification sheets (15 ppb) and b) the lack of coherency observed between model predictions. Low 

ambient NOx levels and a lack of representative data in the NC collocation data likely contributed to the non-physical 

concentrations predicted by the models in Malawi.  

 

The calibrated O3 sensors performed the best during collocation testing compared to the other gas sensors, but in Malawi the 335 

calibration models frequently returned non-physical values and showed inconsistent annual diurnal trends between the models 

and across the sites. For ARI014 and ARI015, the O3 trends were roughly consistent in shape and magnitude and were aligned 

with the expected diurnal trend (i.e., peaking at midday). Peaks in the mean concentration were between 10 and 30 ppb, 

plateauing from 10 AM and 3 PM LT. The RF hybrid model at the ARI015 University site estimated the O3 peak to occur 

earlier in the day compared to the other models and sites. This may be the result of a spurious relationship between Ox voltage 340 

and DP in the collocation data set on which the RF Hybrid model was trained, which held at the Village sites but not at the 
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University site. At the Village 2 site (ARI013), there was a change in raw differential voltage response after December 2017 

that caused all models to fail for the second half of the deployment. All models either consistently predicted negative values, 

values < 1 ppb, or failed to reproduce the expected diurnal trend (i.e., peaking around 9am rather than midday). Only ozone 

data collected before Dec 2017 resulted in reasonable calibrated values and trends (Fig. S24). Notably, ozone data collected 345 

after Dec 2017 corresponded with the high temperature-low ozone regime (Fig. S25) shown in Figure 2a-c. Despite the Ox 

differential voltage data spanning a similar range in both NC and Malawi, there was little overlap in the O3 dimension at 

comparable concentration, RH, and T conditions. Since ozone is a secondary pollutant driven by complex atmospheric 

processes and multiple precursors, the ambient conditions that increase or decrease ozone formation in one region may not 

hold in another environment. Ultimately, although the calibrated ozone sensors performed better than the other gas sensors in 350 

NC, the models were tuned for a set of conditions that did not hold in Malawi.  This suggests that for these Ox sensors and 

these modelling approaches, a lack of environmentally similar collocation data compromised our ability to reliably interpret 

calibrated O3 measurements in this specific deployment environment. 

3.3 Comparison of ARISense CO to remote sensing data   

Given that calibrated CO observations were the most reliable of the ARISense gas data, we compared ARISense values to 355 

remote sensing data products available for Malawi. Figure 4 shows the mean monthly CO from the University (ARI015) and 

Village (ARI013 and ARI014) sites compared to that from two area-averaged remote sensing products: CO surface mixing 

ratio from MOPITT and CO surface concentration from MERRA-2. All three data sets were compared from July 2017 to July 

2018, focusing on differences between the peak agricultural burning (Sept to Oct) and non-burning (Dec to Jul) seasons. 

November and August were excluded from either description (peak burning or non-burning) for the following reasons: (a) a 360 

review of fire studies in the region consistently reported Sept and Oct as the dominant months of the burning season (Nieman 

et al., 2021), (b) Aug and Nov mark the beginning and end of the fire season, respectively, therefore cannot be considered non-

burning months, (c) the exclusion of Aug and Nov better captures strong seasonal differences, providing a measurable 

benchmark to compare the satellite and surface data, and (d) ARISense data for the Village sites was unavailable for Nov 2017 

(see Sect. 3.7 - on difficulties in deployment).The MERRA-2 data set was complete for the full year of interest, but MOPITT 365 

was missing data for the Village region in February and March 2018. The remote sensing data sets were more similar to one 

another at the Village site compared to the University site. At both sites, MOPITT reported higher CO concentrations than 

MERRA-2, especially in the peak season.   

 

 370 
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Figure 4: Monthly carbon monoxide (CO) concentration (ppb) reported by the surface ARISense (Tukey box plots) and remote 

sensing data products (lines and markers indicating mean monthly value) at the (a) Villages and (b) University sites. Top and 

bottom of boxes indicate 75th and 25th percentiles, whiskers show 9th and 91st percentiles, midline indicates median, and stars 

indicate mean. The ARISense surface data were at least 80% complete for each month except where noted with a percentage 375 

text label. Data for July 2017 and July 2018 were averaged. Villages data include data from ARI014 (Village 1) and ARI013 

(Village 2). The annual mean from each data source is given on the right axis. MOPITT (Multispectral CO Surface Mixing 

Ratio Daytime/Descending) is a satellite measurement; MERRA-2 (CO Surface Concentration -ENSEMBLE) is a global 

reanalysis product.  

 380 

All three datasets (MOPITT, MERRA-2, and ARISense) indicated that annual mean CO concentrations were higher overall at 

the University site than at the Village site, although this was less pronounced in MERRA-2. Although ARISense surface 

observations showed the diurnal trends at the Villages differ from the University site, and the peaks associated with cooking 

emissions were much more pronounced, the overall mean concentrations at the University were higher.  Similarly, all three 
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data sets showed increased ambient concentrations during the peak burning season compared to the non-burning season at both 385 

sites. For ARISense, MOPITT, and MERRA-2 observations, respectively, peak season means were larger than non-burning 

season means by 160 ppb, 130 ppb, 60 ppb (Village) and 190 ppb, 115 ppb, 50 ppb (University). Although the ARISense 

indicated larger absolute differences between seasons, the relative increase at both sites was only about 50% of the non-burning 

season mean, while MOPITT and MERRA-2 reported increases of 125% and 75%, respectively. This could be explained by 

ARISense proximity to small-scale combustion activity not resolved by satellite imaging. Satellite-based observations 390 

approximate ambient background concentrations, which increased during the peak season due to regional agricultural burning. 

Meanwhile, the ARISense were exposed to ambient background concentrations as well as nearby biomass emissions, which 

likely remained consistent throughout the year, showing a lower relative seasonal increase. Quantitative disagreement between 

surface and remote CO observations was highest during the burning season (Figure 4). Remote sensing data suggested higher 

CO concentrations at the University compared to the Villages during non-burning periods, but during the peak burning season 395 

this difference shrank and similar concentrations were observed across the sites. Conversely, differences between ARISense 

sites grew by about 6% during the peak season. MERRA-2 and MOPITT concentrations were highest in September, consistent 

with ARISense data at the University site, but not the Village site which peaked in October. However, 90% of the October CO 

data were missing for the Village site.  

 400 

Monthly mean CO ARISense values were 2 to 4 times higher than those reported by MOPITT and MERRA-2. We found 

differences of 175 to 200% between the annual mean CO concentration from ARISense and MOPITT, depending on the site, 

and even larger differences (up to 360%) with MERRA-2. Differences between MOPITT and MERRA-2 were smaller (30 to 

35%). There are few comparable studies available to explain these differences, which are greater than previously reported in 

the literature available for SSA. Some studies in SSA reported good agreement (within 20% bias) between ground 405 

measurements and MOPPIT/AIRS observations, however this was usually for Total Column CO (Buchwitz et al., 2007; Toihir 

et al., 2015). Others reported differences of 60 to 80% between the ground-based and satellite observations, and negative 

satellite bias when intense biomass plumes affected observations, when CO levels were low in the Southern Hemisphere, or 

when atmospheric CO levels changed rapidly (Buchholz et al., 2017; Emmons et al., 2004; Yurganov et al., 2008, 2010). 

Presently, comparisons between satellite and surface aerosol observations in Africa report moderate to poor agreement (Hersey 410 

et al., 2015; Malings et al., 2020).  

 

The observed differences in estimated CO, although large, do not disqualify the ARISense or MOPITT/MERRA-2 

observations. Satellite retrievals and real-time surface measurements do not result in directly comparable quantities. Satellite 

data are generally collected as a once-daily flyover observation, averaged over a ~12,000 square kilometer area. In contrast, 415 

the ARISense data were 1 min resolution, fixed-site, long-term point measurements at the surface. Further, the ARISense data 

were collected near emission sources and were not representative of background conditions. Despite this, the MOPITT, 

MERRA-2 and ARISense data sets agreed on the long-term seasonal trends present in this region, and even corroborated basic 
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site-to-site differences (e.g., higher mean CO at University compared to Village site). These findings suggest the ARISense 

captured synoptic-scale variation in CO, but comparison to remote sensing data did not allow for a quantitative assessment of 420 

data collected at higher temporal resolutions.  

3.4 OPC-N2 performance during collocation 

Pre-deployment collocation PM2.5 measurements in North Carolina (where no reference monitor/data were available) from 

ARI013, ARI014, and ARI015 suggest the Alphasense OPC-N2 sensors in each monitor responded similarly (R2 > 0.9) when 

in the same environment (Fig. S4). ARI013 PM2.5 mass concentration measurements were biased high compared to 425 

measurements made by ARI014 and ARI015 (slope > 1), and ARI015 underestimated the mass at low concentrations compared 

to ARI013 and ARI014 (negative intercept and non-linear clustering at concentrations < 5 µg m-3). The OPC-N2 sensors in 

ARI014 and ARI015 showed the highest similarity (slope = 1 ± 0.05, R2 = 0.96). Inter-unit variation in the slope and intercept 

and in low-concentration behaviour suggests the three sensors would require individualized calibrations to account for their 

differences.  430 

 

Figure 5 shows scatter plots of the ARI023 OPC-N2 and MicroPEM data collected during collocation at the Village 2 site in 

Malawi. RH-correction partially mitigated the impact of overestimation due to hygroscopic growth but did not remove the 

artifact entirely (Fig. S6). RH-correction improved the precision and error metrics, bringing MAE within the target value (≤ 7 

µg m-3) for all averaging intervals (Table S1). Increased averaging interval had a similar effect, but alone was insufficient to 435 

bring MAE within the target range. Changes in bias and linearity appeared driven by averaging interval. OPC-N2 RH-corrected 

1 min data met three of the five suggested EPA target values (m, b, MAE) but 24 h averaged data only met one (MAE). The 

small sample was leveraged by a few points which drove metric values; however, close 1:1 agreement was observed for 4 of 

the 7 data points (Figure 5c). These results highlight the value of longer and more representative collocations; at least two 30 

day collocations would likely be needed, during the hot-dry (Sep to Oct) and during the warm-wet (Nov to Apr) season, to 440 

characterize this specific site.  

 

Even after RH-correction, the OPC-N2 overestimated mass concentrations compared to the nephelometer when RH was ≥ 

70%. Conversely, the OPC-N2 often underestimated mass when RH was ≤ 30%. These effects were most noticeable at higher 

time resolutions (Figure 5a-b). The effects of RH were tempered by a longer averaging interval, however for a particularly 445 

humid day at this site, the 24 h mass concentration was overestimated by a factor of three (Figure 5c). Notably, the moderate-

RH outliers in the 24 h average scatter plot suggest that other factors, in addition to RH, were contributing to error in the OPC-

N2 observations.  
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Figure 5: Scatter plots of RH-corrected PM2.5 mass concentration measurements from the OPC-N2 versus mass-corrected 450 

PM2.5 measurements from the MicroPEM at 1 min (a), 1 h (b), and 24 h (c) averaging intervals. Data points are colored 

according to RH (%) conditions. The number of data points (N) and linear fit lines and regression coefficients (m, b) are given 

in red as Y = mx + b.  Additional metric values are inset: R2 is the coefficient of determination, MAE is mean absolute error 

assuming the MicroPEM is the reference instrument (units of μg m-3), and cV is coefficient of variation. The black, dashed line 

is a 1:1 line.  455 

 

To explore other possible contributors to variable OPC-N2 performance, Figure 6 shows performance for RH-corrected data 

stratified by environmental conditions (wind direction, ambient concentration, and RH). Figure 6a-b (wind direction and 

concentration) were selected to characterize the effect of nearby cookstove emissions, while Fig. 6c highlights the remaining 

effect of RH after correction. We hypothesized that ambient concentration and wind direction might impact OPC-N2 460 

performance given that the site was periodically exposed to cookstove emissions from the household kitchen (within 15 m to 

NW) and from adjacent residences (within 50 m to the S-SW in Fig. S14). Figure 6a shows that wind direction was associated 

with performance variation, although to a lesser degree than RH (Fig. 6c). Slightly increased performance was observed for 

northerly winds. Nearby cookstove use potentially explained the decreased performance associated with southerly winds; four 

of the five morning cooking periods observed in the time series data were associated with wind blowing from the SE-S-SW 465 

(Fig. S8). Figure 6b shows that ambient concentration had a modest impact on OPC-N2 performance metrics; linearity and 

absolute error were expected to increase with concentration. Precision within each concentration bin was within or near the 

recommended target value (cV < 30%). However, the OPC-N2 frequently underestimated the ambient mass concentration 

compared to the MicroPEM, particularly during periods dominated by near-field biomass burning (i.e., slope = 0.4 for 20 to 

105 µg m-3), likely due to its relatively high minimum cut-off diameter. During periods of cookstove influence, the size 470 

distribution, hygroscopicity, and optical properties of the measured aerosol were likely altered. Assumptions about the source 

aerosol, used to inform the RH-correction, were found to affect inferred OPC-N2 performance compared to the MicroPEM, 

though not predictably. For example, higher linearity and lower MAE were observed when the particle composition was 
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assumed to be highly hygroscopic (κ = 1), yet the least bias was observed at the lowest hygroscopicity tested (κ = 0.15). 

Further, when the aerosol was assumed to be characteristic of wildfire (rather than ammonium nitrate, dust or background in 475 

origin), the bias between the OPC-N2 and MicroPEM disappeared (slope = 1.02), yet the error metric was the highest among 

the four aerosol categories, above the target value (Table S2-S3).  

 

 

 480 

Figure 6: Performance (MAE and R2) of the Alphasense OPC-N2 compared to the RH-corrected MicroPEM under different 

environmental conditions: (a) wind direction, (b) ambient concentration, and (c) relative humidity during collocation at the 

Village 2 site in Mulanje, Malawi. The histograms (inset) show the normalized frequency distributions for the ranges of each 

condition recorded during the collocation period. The colored markers in each panel correspond to the histogram bin colors. 

The metrics were calculated from 60-min averaged RH-corrected OPC-N2 PM2.5 concentrations compared to the MicroPEM 485 

mass-corrected nephelometer. MAE is mean absolute error, assuming the MicroPEM concentrations as the true values; R2 is 

the coefficient of determination.   

 

In this deployment site, the OPC-N2 performed the best compared to the MicroPEM during dry conditions (20 to 40% RH) 

and when measuring background aerosol rather than source emissions (Fig. S8 - presumed based on time series data). However, 490 

this result might be partially due to the coincident effects of high RH (Fig. 7). Figure 6c shows OPC-N2 behaviour was largely 

determined by changes in ambient RH (Fig. S7).  In general, performance decreased with increasing RH, and this effect 

remained even after RH correction. For RH = 20 to 40%, RH-corrected OPC-N2 performance approached the target values for 

every metric except for precision (Table S1). After RH increased past 70%, the R2 value approached 0 and the MAE increased 

beyond the target value. Unfortunately, the inset of Fig. 6c shows that an RH range of 60 to 80% was typical for this site during 495 

collocation.  
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We found that the OPC-N2 at this specific site generally underestimated mass concentration compared to the MicroPEM, 

based on less than unity slope values, and the performance was variable at low ambient concentrations (Fig. S7). However, 

outside of very humid (RH > 70%) or very dry (RH < 20%) conditions, the RH-corrected OPC-N2 could estimate PM2.5 mass 

concentration within 6 μg m-3 of the MicroPEM value for real-time, hourly, and daily monitoring purposes. The findings from 500 

this section highlight the importance of quality assurance for low-cost optical particle sensor mass concentration 

measurements, especially those made in environments with highly variable meteorology and nearby ultrafine aerosol sources. 

For this site, contextual information on meteorology and emissions sources and their diurnal patterns helped interpret and 

evaluate the measurements. 

3.5 OPC-N2 performance during deployment  505 

To evaluate the long-term performance of the OPC-N2 during deployment in Malawi, we examined the representativeness of 

the collocation conditions for the full year of conditions experienced during deployment. Figures S26-27 show normalized 

histograms of the T, RH, and PM2.5 mass concentration observed during the collocation and the full-year deployment in 

Malawi, suggesting the two data sets generally spanned a similar range of environmental conditions. However, the collocation 

occurred during the cool, dry season, and RH minima and maxima (regimes associated with poor performance during 510 

collocation – see Section 3.4) were more extreme during the 1 year deployment in Malawi.  
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Figure 7: Diurnal trends of the (left axis) integrated mean PM2.5 mass concentration measured by the OPC-N2 in each 

ARISense at each deployment site and the annual relative humidity at the Village 2 site, (right axis). Error bars represent the 

calculated 1σ (68%) prediction interval of the hourly mean value. The orange (ARI014) text annotation indicates the upper 515 

limit of the Village 1 prediction interval at 6 AM (beyond the range of shown y-axis). Thick lines indicate hourly mean and 

shaded regions indicate interquartile range. 

 

Figure 7 shows the annual diurnal trend of the mean PM2.5 mass concentration, with 1-sigma prediction intervals, using hourly-

averaged data from each deployment location. Peak PM2.5 concentrations were observed around 6 AM LT at all sites, when 520 

morning biomass cookstove activity coincided with high RH (and more atmospherically stable) conditions. Figure 3 shows 

that the diurnal trends of ambient CO (also emitted by biomass burning) were similar to the PM2.5 diurnal trends at each site. 

Again, the largest peaks were observed at the more densely populated ARI014 Village 1 site. The prediction intervals were 

widest between 5 and 7 AM LT, indicating overall low confidence in OPC-N2 measurements during this period. Afternoon 

and overnight means, coinciding with drier conditions, were similar across all three sites and prediction intervals were 525 

narrowest during afternoons. These results suggest background concentrations of PM2.5 in rural Malawi were low (5 to 15 µg 

m-3), but the OPC-N2 could not reliably quantify peak concentrations that were high and variable, dependent on the nearby 

sources and covariance with ambient meteorology (RH). Despite this, qualitative data from the OPC-N2 sensors was sufficient 
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to identify nearby source activity and indicate periods when ambient concentrations were likely high enough to be harmful to 

human health.  530 

3.6 Comparison to other ambient measurements in SSA  

Surface concentrations and diurnal trends of ARISense CO and PM in Malawi were comparable to studies in Kenya, Rwanda, 

Ethiopia, Uganda and South Africa (Scheel et al., 1998; Toihir et al., 2015; Laakso et al., 2008; DeWitt et al., 2019; 

Subramanian et al., 2020; Nthusi, 2017; McFarlane et al., 2021). Comparison of O3 concentrations suggested the calibrated 

ARISense observations likely underestimated actual concentrations. Little comparable data were available to assess NOx 535 

concentrations. The annual median (July 2017 to July 2018) ARISense surface concentrations estimated by the ARISense 

sensors were 9 to 11 ppb for NOx, 4 to 15 ppb for O3 and 240 to 330 ppb for CO. A long-term ambient study at the Rwanda 

Climate Observatory found a mean CO concentration of 215 ppb from May 2015 to January 2017 (DeWitt et al., 2019), similar 

to our findings in Malawi. Another LCS study in Kigali, Rwanda observed a range in ambient CO concentration, from 225 to 

500 ppb, at their rural and urban sites (Subramanian et al., 2020). Both studies of Rwanda found mean ambient O3 540 

concentrations of 30 to 40 ppb (DeWitt et al., 2019; Subramanian et al., 2020). The annual mean ARISense O3 values were up 

to a factor of 10 lower, however, we identified quality assurance issues in the calibrated O3 values, particularly for the second 

half of the deployment data. For a “relatively clean background site located in dry savannah in South Africa: the annual median 

(July 2006 to July 2007) trace gas concentrations were equal to 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO” (Laakso 

et al., 2008).  Background levels of NOx and CO at this site were 2 to 5 times lower than the ARISense annual means, yet 545 

background O3 was in line with the Rwanda studies. The corresponding PM1, PM2.5 and PM10 median concentrations at the 

South Africa background site, 9.0, 10.5 and 18.8 µg m−3, respectively (Laakso et al., 2008), were comparable to ARISense 

observations. The annual median ARISense RH-corrected PM1, PM2.5 and PM10 concentrations were 4 to 7, 6 to 10, and 13 to 

20 µg m−3 depending on the site. These concentrations were also comparable to measurements from Kenya and to U.S. embassy 

measurements in Ethiopia and Uganda (DeWitt et al., 2019; Nthusi, 2017). Average ambient PM2.5 concentrations (measured 550 

with an Alphasense OPC-N2) were found to be 11 to 24 µg m−3 at various sites in Kenya, with pollution episode concentrations 

ranging from 35 to 51 µg m−3 (Nthusi, 2017). These comparisons did not allow for quantitative evaluation of the ARISense, 

but nonetheless improved confidence in the CO and PM data. 

3.7 Performance of ARISense sensor packages over time   

Total data recovery for the 1 year deployment varied by site, season, and sensor, with rates ranging from 30% to 80%. Average 555 

recovery for the 1 year deployment was around 60%, with highest recovery at the University site (~80%) and lowest at Village 

1 site (~40%) (Fig. S16). Data across all sites had the highest completeness (>70%) in the cool-dry (Jun-July-Aug 2017 and 

2018) and the cool-wet season (Mar-Apr-May 2018).  Data losses were mostly explained by power outages, software failures, 

and sensor warmup times after a power outage. Power outages were common in the warm-wet season (Dec-Jan-Feb) due to 

insufficient solar intensity resulting from extended periods of heavy cloud cover. At the ARI014 site, insufficient power led to 560 
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an unanticipated diurnal cycle wherein the monitor would shut off in the early morning hours and require a few hours of solar 

power before turning on again. This daily cycle, coupled with the 8-hour long NO sensor re-equilibration time, led to almost 

0% NO data recovery in the second half of the deployment for Village 1. In all, nearly 50% of data losses at the ARI014 site 

were due to system power failure or failure to write data to file.  Corrupt USB storage devices, which we were slow to replace 

due to ongoing civil unrest (Lilongwe, 2017), resulted in significant data losses in the hot, dry season (Sept-Oct-Nov) at the 565 

two Village sites. Individual sensor failure was rare; however, some gas data were lost to electrochemical sensor drift and 

noise artifacts resulting from frequent power outages, and one OPC-N2 (ARI013) failed in the last 3 months of deployment 

due to an insect nest clogging the OPC inlet. In all, we recorded 6992 hours of data at the University site (ARI015), 5860 hours 

for Village 2 (ARI013), and 4720 hours for Village 1 (ARI014). Future deployments should include insect screens over all 

sensor inlets and improved battery storage and power systems that run at a longer duty cycle in the case of insufficient solar 570 

(e.g., power on only once battery is fully charged) to minimize the impact of sensor equilibration times on data recovery.  

 

Since the monitors were deployed to their sites for >1 year, there was some observation overlap in seasonally similar data 

collected one year apart. To gain insight into sensor stability, we compared the data collected in the first month (July 2017) to 

the final month (July 2018) of the deployment, given that ambient environmental conditions were similar in July of both years 575 

(additional details in Supplementary Information, Sect. 9). It is not possible to know if the range of gas concentrations were 

significantly different between July 2017 and July 2018; we explored this analysis on the assumption that inter-annual 

variability in ambient concentrations was minimal. Bivariate distributions of the raw differential voltage readings from July 

2017 and July 2018 showed that the most frequent observations (i.e., heaviest shaded regions) were approximately the same 

in both years (Fig. S29). Observable differences in the voltage measurements could be partially explained by known 580 

environmental differences.  For example, the Ox sensor voltages in July 2018 were lower on average than in 2017, but this was 

consistent with lower temperatures and higher RH in 2018 compared to 2017.  However, there was potential evidence of 

slightly reduced or altered responses in individual sensors, particularly the NO sensors in ARI013 and ARI015 and the CO 

sensors in ARI013 and ARI014. For these sensors, the 2018 distributions had less spread than the 2017 distributions, suggesting 

either less variation in ambient concentrations in 2018 or decreased sensitivity in the sensors. Diurnal plots from both years 585 

showed that the raw mean voltages and trends were largely consistent (Fig. S30). However, again the most noticeable 

differences were in the individual CO and NO sensors identified from the bivariate distributions. For example, the CO peaks 

measured at mealtimes by ARI013 and ARI014 were about 50 mV lower in 2018 than 2017. These differences could be 

explained by lower concentrations in 2018 than 2017, changes in the raw sensor response over the 1 year period, or by both. 

Without reference equipment, we were unable to investigate sensor drift and decay more rigorously. This preliminary analysis 590 

suggests individual sensor responses likely were altered during the 1 year deployment, but there was no clear evidence for 

systematic deterioration within or across the electrochemical sensor groups used in the ARISense.  
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Calibrated CO data trends were consistent for both years, with the model responding as expected to the lower voltage readings 

in 2018 compared to 2017; for ARI013 and ARI014, the calibrated CO peaks at mealtimes were accordingly lower, by about 595 

100 ppb, in 2018 (Fig. S31).  However, although the raw Ox sensor trends in 2018 and 2017 were consistent for all the 

ARISense, the kNN hybrid model calibrated O3 data were highly irregular between the two years (Fig. S31). For example, the 

calibrated O3 data for July 2017 showed the expected diurnal pattern (concentration increasing with solar intensity) with 

plateaus between 15 and 40 ppb, depending on the site. Yet in July 2018, although the raw Ox diurnal data looked similar to 

2017, the calibrated data for ARI013 and ARI015 showed noon-time values between 0 and 5 ppb, and the diurnal trend for 600 

ARI013 showed a flat line (i.e., not correlated with solar activity). This finding, that raw Ox sensor voltages were similar year 

to year while the calibrated O3 values were not, provides further evidence that the lack of comparable T/RH/O3 collocation 

data contributed to the non-physical O3 measurements made in the second half of the deployment at the ARI013 and ARI015 

sites. 

  605 

Before their return to NC, ARI013 and ARI014 were used for high-concentration emissions monitoring experiments in rural 

Malawi in July and August 2018, after the 1 year ambient monitoring campaign was completed. The details (i.e., number of 

experiments, duration, approximate CO concentrations) of those experiments are discussed in Supplementary Information 

Sect. 10. ARI013 and ARI014 were then returned to NC and were collocated with reference instruments at the near-highway 

NC-DEQ site used in the pre-deployment collocation. The reference monitor data from the post-deployment collocation in NC 610 

(Aug 2018 to May 2019) were intended to enable investigation of changes in raw sensor response and model performance. 

However, the resulting data instead demonstrated that sensors had been severely degraded during the high-concentration 

exposures. In the post-collocation data, the raw differential voltage gas sensor responses in ARI013 and ARI014 were well 

correlated with each other (R2 = 0.7 to 0.9) (excluding the ARI013 Ox sensor which was clearly degraded; Fig. S32), but less 

correlated than during the pre-collocation comparison (R2 = 0.9 to 0.99). To facilitate comparison with the pre-collocation 615 

performance metrics shown in Fig. 1, the MAE and R2 values for the post-deployment collocation are given in Table S7.  

Despite showing inter-sensor consistency, the raw differential voltage sensor measurements (other than CO) made by ARI013 

and ARI014 were poorly correlated with reference measurements (Fig. S33-34). Inspection of the time series showed that the 

ARISense NO sensors tracked some spikes in the time-aligned NO reference data, but the NO2 and Ox sensors did not track 

reference data trends (Fig. S35-36).  The time series of the differential voltage and temperature data suggest the gas sensors in 620 

ARI013 and ARI014 were responding similarly to changes in T and RH, but they were no longer sensitive to changes in the 

target gas (Fig. S35). This likely explains why the sensors in ARI013 and ARI014 were still well correlated with each other, 

but why they were not correlated with reference measurements. The calibrated CO data were the only sensor data still 

correlated with CO reference measurements, although the calibrated CO data showed aberrant features (Fig. S37-38). These 

ambient sensors (except for possibly the CO sensor) were not appropriate for high-concentration emissions monitoring and 625 

they did not survive extended exposure to near-source concentrations of biomass combustion emissions, leading to the poor 

performance during post-deployment collocations with reference instruments in NC. Given these dramatic changes in sensor 
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responses, models were unable to generate reasonable concentration values from sensor signals. The partial exception to this 

was for the kNN hybrid calibrated CO data, which was roughly correlated with the reference data (R2 = 0.5), suggesting that 

the CO sensors might retain some function after additional collocation and recalibration.  630 

4 Conclusions 

Our experience provided lessons regarding the design and deployment of low-cost AQ monitoring systems for off-grid 

applications. The ARISense packages survived the 1 year deployment to Malawi, however they suffered individual sensor 

failures and frequent power losses. Given that 30 to 50% of the deployment data were lost due to insufficient power and corrupt 

data storage systems, for future solar-powered deployment efforts we suggest that the power system be designed to allow for 635 

primary and secondary data recovery goals (i.e., a back-up plan to prioritize the most desirable data in the event of insufficient 

power).  Further, we were frequently restricted in troubleshooting and repair operations by spotty cellular connection, limited 

human resources, and our inability to remotely locate and procure appropriate equipment. A repair kit with basic equipment 

(e.g., pre-programmed USB devices, alternate SIM cards, hand tools with attachments specific to each LCS, etc.) stored in a 

nearby, secure location would have allowed for quicker troubleshooting and repair. We suggest that in addition to solar power 640 

limitations, other potential confounding factors like extreme weather and limited technical capacity and assistance availability 

be considered before deployment to remote locations. We found that the more closely located the monitor was to a trained 

local assistant, the lower the overall data losses were. 

 

The responses of the LCS were not remarkably different after 1 year in the field (Fig. S29-30), assuming actual concentrations 645 

did not vary significantly from 2017 to 2018. However, except for CO, repeated exposure to fresh biomass emissions 

completely degraded the sensors.  Key manufacturer specifications indicated that the CO sensor was the most robust; the 

exposure limit was 40 times higher than that of the Ox, NO, and NO2 sensors. Further, the maximum temperature and RH range 

for the CO sensor was 50°C and 90%, respectively, and 40°C and 85% for the Ox, NO, and NO2 sensors. During deployment, 

the maximum ranges were occasionally exceeded for every sensor except CO. Operation beyond specified conditions, 650 

combined with repeated, although relatively short (< 100 hours), exposure to high concentration gases during the post-

deployment emissions monitoring experiments, made the three less robust sensors unsuitable for future use.  We caution end 

users to carefully select an appropriate sensor package given pilot information about the emission sources in their target site.  

 

For this deployment site, detailed information on nearby sources, ambient environmental conditions and diurnal emission 655 

patterns was needed to help interpret the calibrated measurements from Malawi and assess their validity. Performance 

assessment in NC suggested that the ARISense sensor package (excluding the NO2 sensor) calibrated by four of the five 

calibration models (excluding MLR) was be appropriate for supplemental monitoring based on U.S. EPA guidelines. However, 

performance during the pre-deployment NC assessment did not reflect performance in Malawi. A lack of coherency between 

calibration model predictions and frequent non-physical concentration values (Fig. 3) showed that LCS measurements made 660 
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in deployment environments different from the collocation environment can be unreliable and may lead to biased information 

about the deployment environment. For example, although the Ox sensors showed the highest performance of all sensor types 

during collocation and the measured RH, temperature, and Ox voltage ranges were similar in the collocation and deployment 

environments, the calibrated O3 data in Malawi was unreliable. The collocation data were collected in an urban area near a 

highway, likely a VOC-limited ozone regime, whereas the ozone chemistry in rural Malawi was more likely NOx-limited. This 665 

difference in chemical regime could have contributed to the poor performance of the calibration models in the deployment 

environment.  Similarly, poor performance was observed for OPC-N2 mass concentration measurements made in a strongly 

seasonal environment near ultrafine aerosol sources. These findings indicate that the collocation environment should ideally 

be the same as the deployment environment to simplify calibration and improve performance. If in situ calibration is possible, 

evidence from this study supports the need for at least two collocation periods taking place during different seasons. For 670 

example, the high-temperature low-ozone regime (Fig. 2), which resulted in non-physical concentration predictions (Fig. 3), 

appeared to be associated with the second half of our deployment period (the wetter months).  If in situ calibration is not 

feasible, laboratory calibration may enable calibration under a variety of environmental conditions and concentrations, 

however the effectiveness of lab-based calibration should be verified. For example, an effective laboratory chamber calibration 

would require some level of a priori knowledge of typical ambient conditions and local ozone chemistry. We expect our 675 

experience in Malawi may generalize to other regions, suggesting that additional research is needed to address the issue of 

LCS calibration for secondary pollutants.  

 

Although there have been advancements in calibration methods, the difficulty of identifying and applying a singular best in-

field calibration model remains a common issue among LCS users (Topalović et al., 2019; Lewis and Edwards, 2016; Giordano 680 

et al., 2021). From an end user perspective, the burden of calibration easily becomes overwhelming; there is presently no clear 

guidance on which model would be appropriate for which sensor under which circumstances. This limits the potential user 

base of LCS technologies, complicates our ability to generalize findings across different studies, and may even lead to poor 

quality measurements. Given the wide range in potential LCS technologies and deployment conditions, it is not possible to 

fully generalize the viability and sensitivity of the ARISense to another LCS package deployed in a different area. However, 685 

the main lesson is clear; LCS are most useful when they are carefully selected and calibrated for a single purpose and location, 

for which the environmental and pollutant conditions are at least partially characterized.  

 

A growing body of literature highlights the potential value of LCS technologies for  Sub-Saharan Africa and other low-resource 

settings (Subramanian and Garland, 2021; Wernecke and Wright, 2021; Rahal, 2020; Sewor et al., 2021; Awokola et al., 2020). 690 

Advancements in machine learning techniques show how LCS can be used for source identification and attribution in regions 

where little quantitative information currently exists on dominant emission sources (Hagan et al., 2019; Thorson et al., 2019). 

While LCS in SSA show promise, many of the issues experienced in this study stemmed from a lack of in situ reference 

monitors. Additional reference grade monitors throughout the region may help circumvent some issues related to calibration 
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modelling and quality assurance. A regional, shared facility would enable periodic, regionally representative collocations 695 

without requiring every country to establish its own regulatory network. Recent research has improved our ability to synthesize 

data from networks of LCS through computational calibration solutions which minimize the need to transport and collocate 

each individual monitor separately and increase the spatiotemporal resolution beyond that of reference networks (Buehler et 

al., 2021; Malings et al., 2019a; Kelly et al., 2021; Considine et al., 2021; Sahu et al., 2021).  Concurrently, policy-focused 

researchers are helping to bridge the gap between governments and AQ scientists by creating comprehensive frameworks 700 

which provide systematic procedures to establish AQ monitoring networks in low and middle income countries (Gulia et al., 

2020; Pinder et al., 2019). In the meantime, we found support from local universities, which helped maintain the pilot 

deployment of this LCS network. We expect that any AQ program in SSA will benefit from building long-term, local capacity 

and knowledge transfer systems for training on-site staff and for receiving their feedback and guidance.  

 705 
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